Edge-independent spanning trees in augmented cubes
نویسندگان
چکیده
منابع مشابه
Independent spanning trees in crossed cubes
A set of spanning trees in a graph is said to be independent (ISTs for short) if all the trees are rooted at the same node r and for any other node v(6= r), the paths from v to r in any two trees are nodedisjoint except the two end nodes v and r. For an n-connected graph, the independent spanning trees problem asks to construct n ISTs rooted at an arbitrary node of the graph. Recently, Zhang et...
متن کاملConstructing edge-disjoint spanning trees in locally twisted cubes
The use of edge-disjoint spanning trees for data broadcasting and scattering problem in networks provides a number of advantages, including the increase of bandwidth and faulttolerance. In this paper, we present an algorithm for constructing n edge-disjoint spanning trees in ann-dimensional locally twisted cube. Since then-dimensional locally twisted cube is regular with the common degree n, th...
متن کاملConstruction independent spanning trees on locally twisted cubes in parallel
Let LTQn denote the n-dimensional locally twisted cube. Hsieh and Tu (2009) [13] presented an algorithm to construct n edge-disjoint spanning trees rooted at vertex 0 in LTQn. Later on, Lin et al. (2010) [23] proved that Hsieh and Tu’s spanning trees are indeed independent spanning trees (ISTs for short), i.e., all spanning trees are rooted at the same vertex r and for any other vertex v(6= r),...
متن کاملOn Constructing Three Edge Independent Spanning Trees
Abstract. In this paper, we show that a prior result by Khuller and Schieber on the construction of k edge independent spanning trees in a k edge-connected graph fails under certain scenarios. We illustrate the failing of the algorithm with an example and identify the cause, which we refer to as the partial order inversion. For the case of k = 3, we develop a method to compute three edge indepe...
متن کاملEdge Disjoint Spanning Trees ∗
Let Zm be the cyclic group of order m ≥ 3. A graph G is Zm-connected if G has an orientation D such that for any mapping b : V (G) 7→ Zm with ∑ v∈V (G) b(v) = 0, there exists a mapping f : E(G) 7→ Zm − {0} satisfying ∑ e∈E+ D (v) f(e) − ∑ e∈E− D (v) f(e) = b(v) in Zm for any v ∈ V (G); and a graph G is strongly Zm-connected if, for any mapping θ : V (G) → Zm with ∑ v∈V (G) θ(v) = |E(G)| in Zm, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Theoretical Computer Science
سال: 2017
ISSN: 0304-3975
DOI: 10.1016/j.tcs.2017.01.016